
Journal of Mathematical Chemistry 12(1993)137-146 137 

Isospectral benzenoid graphs 
with an odd number of vertices 

D. Babid 
The Rugjer Bo.~kovid Institute, P.O. Box 1016, 41001 Zagreb, Croatia 

A procedure for construction of isospectral pairs of benzenoid graphs is described. 
It is based on the Heilbronner "wrapping" procedure for construction of isospectral 
bipartite graphs. Only isospectral pairs having an odd number of vertices could be 
produced (the smallest among them has 33 vertices and 9 hexagons). Thus, the conjecture 
announced by Cioslowski is partially disproved. 

1. Introduction 

The work reported here has been motivated by the recently announced 
conjecture [1] on non-existence of isospectral benzenoid graphs, In the present 
paper, this conjecture is partially disproved by counterexamples having an odd 
number of vertices. Here is described a procedure by which further isospectral 
benzenoid pairs can be constructed. However, it is confined exclusively to benzenoids 
with an odd number of vertices. Thus, the conjecture stated in ref. [1] still holds 
when restricted to benzenoids with an even number of vertices. 

For graph-theoretical definitions and nomenclature, the reader is referred to 
refs. [2,3]; only necessities will be given here. A benzenoid graph is defined [3] 
as a graph induced by the vertices lying on and inside the cycle in the hexagonal 
lattice. A spectrum of the graph G denotes a set of eigenvalues of the corresponding 
adjacency matrix A(G). Non-isomorphic graphs having equal spectra are called 
isospectral. In the following text, the terms "benzenoid graph" and "isospectral 
benzenoid graphs" will be shortly written as BG and IBGs, respectively. 

The present procedure for construction of IBGs essentially relies on the 
method reported by Heilbronner [4]. It is, in fact, the Heilbronner method adapted 
just for benzenoid graphs: some additional rules ensure that the obtained graphs will 
be benzenoid and non-isomorphic. 

2. Heilbronner's procedure 

By Heilbronner's procedure, only bipartite isospectral graphs can be constructed. 
The vertices of a bipartite graph can be colored with two colors so that no two 
neighbors are equally colored. If vertices of one color are numbered first, and then 
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the remaining vertices of another color, the corresponding adjacency matrix and its 
square will have the following forms: 

E o • 0]  
A(G)= BT 0 ' BTB " 

Diagonal blocks of A2(G) can be regarded as adjacency matrices of  two smaller 
graphs derived from the parent graph G. They can also be constructed directly from 
G by first removing all vertices of one chosen color (together with all edges), and 
then by linking the retained vertices. Each two retained vertices are to be linked by 
as many edges as they had common neighbors in G. In addition, each vertex gets 
as many loops as it had neighbors in G. Any of the two graphs obtained in this way 
will be called an H-graph of G and denoted as H(G). An H-graph with loops 
removed will be denoted as H'(G) and called a truncated H-graph. 

If two non-isomorphic bipartite graphs Gl and G2 with an equal number of 
vertices have at least one isomorphic pair {H(G1), H(G2)}, then G1 and G2 are 
isospectral [4]. Heilbronner's procedure relies on the fact that a reconstruction of  
G from a given H(G) is not in general unique. It begins with the construction of  
an H-graph from a given G~. Then from H(G1) one attempts to reconstruct a different 
parent graph G2. If it is possible, and if G1 and G2 have an equal number of vertices, 
they are isospectral. An illustrative example is given in fig. 1. 

2 

3 _2 
2 -  

G 1 H(G1)=H(Gz) G2 

Fig. 1. An example of isospectral graphs constructed by the Heilbronner procedure. 
The vertices in G 1 and G 2 retained in their H-graph are marked by boldface. 
Numbers at vertices of H(G1) = H(G2) denote the associated number of loops. 

3. Specialization for benzenoid graphs 

Let us consider a relation between a benzenoid and its H-graph. As fig. 2 
shows, a truncated H-graph of the hexagonal lattice (HL) is the triangular lattice 
(TL). A truncated H-graph of the benzenoid graph G is a subgraph of  the TL in the 
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Fig. 2. A truncated H-graph of the hexagonal lattice is the triangular lattice. 
A perimeter of an example BG and of the corresponding H'(BG) are 
drawn by bold dotted and full lines, respectively. Details termed as 
"full" and "empty" triangles are drawn, enlarged, on the right-hand side. 

same way as G is a subgraph of the HL: H'(G) is a graph induced by vertices of 
the TL lying on and inside the perimeter of the underlying G. 

During a reconstruction, H'(G) is being "wrapped" by adding new vertices 
[4]. Figure 2 reveals an important feature of reconstruction of a benzenoid graph 
G from a given H'(G): new vertices are added by inscription into the triangles of 
H'(G) in a strictly altemative manner: each "full" triangle (with a new vertex 
inscribed) shares its edges only with "empty" triangles (without a new vertex), and 
vice versa: each "empty" triangle is surrounded only by "full" triangles. This shows 
that from a given H'(G), one can try to reconstruct the parent benzenoid graph(s) 
in two and only two ways related to the two mutually exclusive sets of triangles 
into which new vertices will be inscribed. 

The reconstruction process is completely determined once the first new vertex 
is inscribed into H'(G). It fixes positions at which all other vertices will be added. 
After new vertices are inscribed, each of them is linked to the vertices of the proper 
triangle, and old edges - sides of the triangle - are erased. After that, original edges 
of the H'(G) are present only on its perimeter. Each one is to be replaced by a new 
vertex linked to the vertices which were ending the replaced edge. 

In the original Heilbronner procedure, one starts with a given graph Gt and, 
by using H(G1), eventually derives an isospectral mate G2. However, since IBGs 
are rather rare, one can hardly expect to find such a pair accidentally. Instead, one 
is prompted to look for such H(G) from which both of the two ways of reconstruction 
will be possible. This task is fairly complicated by loops present in H(G), and for 
this reason the search is further shifted onto an appropriate H'(G). 
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A truncated H-graph, which we are looking for, must satisfy the following 
conditions: it must allow a reconstruction of  a parent graph in both of  the two ways, 
the two obtained graphs must be benzenoid, non-isomorphic and with an equal 
number of  vertices, and their complete H-graph must be isomorphic. An examination 
of  a few examples quickly leads to the formulation of  some necessary conditions. 
These conditions require the absence of  certain structural details in H'(G) and are 
best explained in terms of  its dualist D(H'). 

A dualist of  a triangular graph is defined in the same way as for a BG [5]: 
a graph is first embedded in the TL, and in the center of  each triangle a vertex of 
the dualist is placed. The vertices in adjacent triangles are linked, and upon completion, 
the dualist is obtained. Angles between edges are held fixed, and thus a dualist is 
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Fig. 3. A triangular lattice (normal line) and a hexagonal 
lattice (bold line) positioned as dualist graphs of each other. 

not a graph, but rather a geometrical object. As fig. 3 shows, a dualist of  the TL 
is again the HL (and vice versa). Therefore, a dualist of H'(G) must be embeddable 
into the HL. 

Figure 4 shows three structural details which are forbidden in the dualist 
D(H'). Figure 4(a) shows that D(H') cannot have any terminal vertex since the 
corresponding triangular graph cannot be reconstructed into a valid BG when a 
triangle which corresponds to a terminal vertex of  D(H') is chosen to be "full". The 
same applies to a detail depicted in fig. 4(b): one of  the two reconstuction ways 
cannot yield a valid BG. 

A detail shown in fig. 4(c) is related to the loops of  an H-graph. Let us recall 
that an isospectrality of the constructed BGs is guaranteed when their complete, not 
only truncated, H-graphs are isomorphic. When the detail from fig. 4(c) is present 
in a dualist, the two H-graphs will have a different number of loops on the designated 
vertex. Although this does not mean that the two complete H-graphs will be non- 
isomorphic, the eventual isomorphism in this case did not prove to be useful: in all 
considered examples, the two constructed BGs were found to be isomorphic too. 
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Fig. 4. (a) D(H') must not  possess a terminal vertex. In the case of its 
presence, at most  one way of  reconstruction is possible: G 2 possesses 
a terminal vertex and therefore is not a BG. (b) The  detail of  D(H') 
which can be reconstructed also in at most one way: G 2 contains the 
four-valent vertex improper to a BG. (c) The detail of D(H') and its two 
ways of reconsta-uction into G 1 and G 2. It is forbidden because H(GI) 
and H(G 2) have different numbers of  loops at the designated vertex. 
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In order to avoid an isomorphism of the graphs being constructed, an additional 
condition is put on the dualist D(H'). According to its relation to the HL, vertices 
of  D(H') can be colored with two colors so that no two adjacent vertices would be 
of  the same color. Two such colorings of  D(H') are possible. If the two colored 
dualists are equal, the constructed benzenoid graphs will be isomorphic. This is 
clear from the following consideration. Vertices of  one color may be taken to 
represent triangles which will be full during the construction. Then the colored 
D(H') determines the parent H'-graph, and also the way of its use in the construction. 
If the two colored D(H') are indistinguishable, so will be also the BGs derived from 
them. 

Hence, the conditions formulated so far require that the dualist D(H'): (1) 
must be embeddable into the HL, (2) has no terminal vertices, (3) has no details 
shown in figs. 4(b) and (c), and (4) has two different ve r t ex  colorings in two colors. 
The present conditions are shown to be necessary. Whether they are also sufficient 
remains to be proven [6]. 

4. Examples 

Since the required conditions are formulated in terms of a dualist D(H'), a 
natural way to begin a construction is to find a satisfactory dualist. Each BG without 
fissures, coves and fjords on its perimeter (see ref. [3] for definitions of  these 
structural details) is a good candidate for a valid dualist. It has only to be checked 
on different colorings. All other conditions are already fulfilled. 

A useful extension of this class has been found in the so-called, linked 
benzenoids. These are graphs obtained by linking separate (possibly also linked) 
benzenoid systems by bridges, so that the resulting graph is again embeddable in 
the HL. If the notion of  perimeter is extended to comprise the present bridges too, 
linked benzenoids can also be characterized by structural details such as fissures, 
bays, coves and fjords. In order to be a valid D(H'), also the linked benzenoid graph 
must not possess fissures, coves and fjords, and must have two different colorings. 
No other kind of graphs could be found to satisfy the established criteria. Figure 5 
shows some examples of  valid dualists D(H'). 

Figure 6 depicts an example of  the construction of  IBGs. Incidentally, the 
two benzenoid graphs shown are the isospectral pair with the least number of  
hexagons (nine) obtained to date. Whether it is the smallest one will be clear after 
a systematic examination is completed [7]. 

5. Closing remarks  

The described procedure can be used for systematic generation of  IBGs. 
Although a necessity and sufficiency of  the specified rules are not strictly proven, 
they can at least serve as a good guideline. 
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Fig. 5. Examples of valid D(H') graphs: they are distinctly 
(linked) BGs without fissures, coves and fjords on their 
perimeters and with two different colorings in two colors. 

G1 G2 

Fig. 6. An illustration of the described procedure 
for construction of IBGs. The shown example is 
with the least number of hexagons obtained to date. 

H'(GI)=H'(G2) 
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Fig. 7. (a) BG composed from phenalene tiles. (b) On the first drawing, 
convexities (full circles) and concavities (empty circles) of a phenalene 
tile axe designated. The second drawing depicts the prescribed way of 
sticking of adjacent tiles, and the third drawing depicts disallowed 
ways of their sticking. (c) "Upside-down" transformation of G 1 into G 2. 
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All isosI~ctral pairs generated so far have an odd number of  vertices, and this 
is the characteristic property of the presented procedure which cannot be 
overcome [8]. Nevertheless, it can produce coronoid IBGs with an even number of  
vertices (see fig. 8 and the explanation in the text). The most tempting question now 
is whether the conjecture in ref. [1] can also be disproved for (regular) benzenoids 
with an even number of vertices. 

There is an attractive structural property of  IBGs obtained by this procedure, 
namely, all o f  them can be depicted as being built from phenalene blocks, as shown 
in fig. 7(a). Any two adjacent blocks stick to each other exclusively in the way 
depicted in fig. 7(b): a convexity of one enters into a concavity of another. This 
requirement implies the same orientation of all present tiles. All benzenoids built 
in this way have an odd number of vertices, and this coincides with the noted 
property of  the obtained IBGs. There is a relation between so-viewed isospectral 
mates which may be used as an amusing way for their construction. An example 
is shown in fig. 7(c): first, a BG must be built from phenalene tiles in the prescribed 
manner. Second, each block must be rotated in a place for 180 °. This can be done 
in more equivalent ways and one of  them is depicted in fig. 7(c). When the rotation 
is completed, phenalene tiles again stick tightly to each other and the obtained BG, 
if not also isomorphic, is isospectral to the starting one. This procedure can also 
be used to obtain coronoid IBGs, with an even or an odd number of  vertices. In that 

) 
) 

Gi G 2 

Fig. 8. The two coronoid IBGs built from phenalene tiles 
and mutually related by the "upside-down" transformation. 

order, one has to build up a coronoid BG from phenalene tiles. Then, the "upside- 
down" transformation will produce its isospectral mate (which has yet to be checked 
on an isomorphism). An example of  such a pair is shown in fig. 8. 
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It is not difficult to find out that each phenalene tile in G corresponds to a 
hexagon in D(H'(G)) and that their sticking scheme provides a perimeter of D(H'(G)) 
free of fissures, coves and fjords. A described "upside-down" transformation of a 
phenalene tiling is related to a transition from one colored D(H'(G)) to another one. 
Therefore, the last procedure is only a more appealing presentation of the previously 
described one. 

Specific properties of the phenalene graph, useful for the construction of 
isospectral graphs, have already been observed and studied in ref. [9]. Further 
investigation in this direction, as well as a more formal formulation of the described 
procedure, is under way [6]. 
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